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ABSTRACT

This paper presents a survey and comparison of some computational

methods and algorithms for gamma and log-gamma functions of com-

plex arguments. All these methods and algorithms are reported

recently in the open literature and include Chebyshev approximations,

Pade expansion and Stirling's asymptotic series. The comparison i

leads to the conclusion that Algorithm 421 published in the Communications

of ACM by H. Kuki is the best program either for individual application or

for the inclusion in subroutine libraries.
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1. Introduction

In the past two years there appear in the open literature a number of

papers on the computation of gamma or log-gamma functions of complex

arguments: F(z) and Inf(z). In particular, there are two published

algorithms, A404 and A421 [3 and 2], there is Luke's analysis

published in a SIAM Journal [ 4 ], there are Spira's study [ 5 ] and Cody's

approximations [ 1 ], both reported in the Mathematics of Computation. The last

approximations apply only to special cases where the argument values lie

on straight lines parallel to the imaginary axis. In this article we attempt

to compare and discuss the methods or algorithms given in these papers.

We hope that such investigation may provide several useful functions.

First, it surveys the recent activities in this area of computational

mathematics. Second, it provides information on what good methods to

use in computing this function and thereby eliminating the poor ones. Third,

it helps to bring out a high-quality algorithm to be recommended either

for individual use or for the inclusion in program libraries. Last, but

not least, we hope this study may contribute some ideas to the methods and

processes of evaluation of mathematical software.

II. Computational Methods

For the five papers mentioned we find three distinct methods proposed,

viz., Chebyshev rational approximation, asymptotic expansion and Pade

approximations. All these methods are applicable to arguments confined

in some segments of the complex plane. An algorithm using any of these

methods is therefore dependent on some analytic continuation to cover all four

For conciseness, papers of multiple authorship will be referred to by the

first author. The references will give full citations.
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quadrants of the complex plane. For the function in question, we have simple

formulae for such purpose, but even these simple formulae have to be

implemented with caution in order to increase efficiency and enhance

accuracy, as we shall discuss subsequently. We find it appropriate here to

list these formulae for later references in this article. They are, respec-

tively, well-known formulae for recursion, reflection, conjugation and

duplication of arguments (Cf. [7 ]):

n-1

F(z+n) = r(z) [1 (z+k) (1)
k=O

(z)F(l-z) = Tcosecnz, (2)

F(z) = r(z), (3)

r(2z) = 22z (z)F(z+ - )/VTT (4)

1. Chebyshev Rational Approximations

First we turn to Cody's approximations, which are applicable to special

cases of this function and should not be directly compared with the other

investigations considered here. In his investigation, Cody's main

concern is to provide minimax approximation for the Colomb phase shift,

which occurs in the asymptotic behavior of the Coulomb wave functions,

2 JPL Technical Memorandum 33-686



and is defined as

TL(1) = Im nf(L+l+iT]) (5)

where L is an integer. The zeroth order phase shift is represented

by 3 sets of rational approximations of the following form:

O -O (T2 T- 0)R 1(,m;T 2 ), O 2. 0, (6)

R2(), m; T 2 ), 2.0 1- 4.0, (7)

i arctan(1)+I[ 9 I 2n(1+22 ) + R 3 ( 2m ; / 11 2 ) ] 4. 0 T , (8)

where 1T0 is the positive nontrivial zero of cr0 (71), and the R's are

rational functions of degree I in the numerator and m in the

denominator. We note here that the asymptotic approximation as

expressed in equation (8) can be substantially improved for efficiency.

To this end we may use

JPL Technical Memorandum 33-686 3



O =~-1 + /2,

from

Inf(l+iT) = (nTl+inr/2) + Znf(i ),

and an approximation of the form

Tr = Im lnF(i] ) a T1£n]-T-/4- 3 (Lm;1/Ti2) (8a)

In other words, the arctangent function may be alleviated in equation

(8). Since it constitutes almost 1/2 of the cost in that equation, this

amounts to a substantial savings. The difference in efficiency between
A

R 3 and R 3 should be insignificant because these two rational functions

are approximating respectively the asymptotic behaviors [ 1/( 2+1)] -n

and [I/2 ]-n, which are almost identical for large T.

Cody further suggests that higher order phase shifts may be computed

from the identity

L

L ) 0(T]) + arctan(T]/j), (9)
j= 1

which comes from the recursion formula (1).

In the context of our general discussion in this paper, the main

application of Cody's approximations will be for the computation of the

4 JPL Technical Memorandum 33-686



gamma function of pure imaginary arguments. Let

Anr(iy) = U + iV. (10)

We then have (also, cf. [ 7 ]),

I I
U = ; LnrT - d- n(ysinhTny), (11)

and

V = O0 (y) - rr/2. (12)

Cody's approximations for cr0 (y) are very efficient. For example, for

-8
a relative truncation error less than 10 , one needs only 4-4 rational

functions for y ! 4. 0 and 2-2 rational functions for y> 4. 0.

2. Stirling's Approximation

We now turn to the use of Stirling's approximation - the subject of the

articles by Kuki, Lucas and Spira. Of the two well-known versions of

this approximation, all the authors mentioned have chosen the more

efficient form, viz., that for log-gamma

nrF(z) = (z- 2 )Bnz - z + n2k(2kn) + Bk/2kN(z) (13)
k= 1

where T N is the truncation error term and B2k are Bernouli numbers.

There have been reported in the literature several bounds and estimates

JPL Technical Memorandum 33-686 5



for the quantity TN. Spira has summarized some of these. We give

here an updated review of these error analyses and applications.

(i) Whittaker and Watson [ 8 ]

I B2N+2 I K(z)
ITNI < (14)(2N+l)(2N+2) Iz 2N+ l

where

K(z) = upper bound Iz 2 /(u 2 +z 2 ) 1, u > 0

(ii) Nielsen [6 ]

(B2N+2
ITB < BN+N2' larg z <r (15)

(2N+1)(2N+2) Iz [N+1[cos( -L argz)]2N+2

(iii) Spira [5 ]

ITNI 2IB2N/(2N-1) 1 Imzll - 2 N , Re z <0, Imz # 0,

(16)

ITNI B2N/(2N-1)1 - Izl2N ,  Re z > 0.

(iv) Lucas and Terrill [ 3]

IRe TNI < IRe SN+1 I, IImTNI < !ImSN+l., arg zI < /4 (17)

where SN+ 1 is the (N+1)st term in the asymptotic series (13).

This is actually derived from the bound (14).

6 JPL Technical Memorandum 33-686



(v) Kuki [ Z ]

TNI < E, Rez : max(a(E), min[b(E), c(E)-I ImzU]] > 0, (18)

where a, b and c are constants dependent on a given E and are

derived from the condition (14).

The choice of a proper truncation error control is extremely important

because such choice determines for a desired accuracy the region of

applicability of Stirling's approximation which in turn affects the efficiency

and final accuracy rendered by an algorithm. Of the five types of error bounds

described above, we believe that in general Nielsen's formula is too ex-

pensive in the requirement of computing a cosine and an arctangent and

Lucas' formula too inefficient in its exclusion of one-half of the complex

plane for applicability. Kuki's truncation error control is realistic and

most efficient, but suffers from serious inflexibility due to the require*

ment that the boundary curve need be derived for each different precision

desired. All in all, we believe that Spira's error bound is a reasonable

compromise choice for a general algorithm for the complex gamma

function. It is simple to use and is fairly efficient in its permission of

the applicability of Stirling's approximation in a large segment of the

complex plane, thereby minimizing the use of recursion.

With the proper boundary curve provided by a particular truncation error

control, Stirling's approximation must be used in combination with some

or all of the analytic continuation properties given in equations (1) - (4).

JPL Technical Memorandum 33-686 7



The following figures show the implementation (or the proposed

implementation in Spira's case) of the various authors being reviewed.

For example, in Lucas' implementation, given an argument z on the left

half of the complex plane formula (2) is used to reflect the computation

to the right half. Then, if necessary, formula (1) is used to raise the

argument such that (13) may be applied. Similar remarks apply to the

other two cases.

8 JPL Technical Memorandum 33-686



Figure 1. Implementation of Stirling's approximation

by different authors. Numbers in figures
refer to formulae in this text. x= Re z, y= Imz.

y

(2) (1) (13)

x= 10

(2) (1) + (13)

(i) Lucas & Terrill

Y

x= X

y= y-x (13)

(2)+(3) (1)
XX=X

(2) (3)

(ii) Kuki: [x O, y0 , x 1 
] obtainable from Ca(E), b(E), c(E)]

y

(13) Iz =z0

(13)
(2) (1) \
(2)

x

(2) (1)

(13)

(iii) Spira
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3. Pade' Approximations

We next turn to the Pade' approximation used by Luke [ 4 ]. These

approximations are derived from those for two incomplete gamma

functions, viz., F(z) = y(z,c) + F(z, c), where c may be considered a

free parameter in the context of the present application. The

approximant takes the following form.

CG(z) Gm(z)
(z+l) - n(z) + m( ) + L(z) + U (z), R(z) > 0 (19)

D (z) H (z) n m

where C , D , G and H are constituted of hypergeometric functions

of the type pF q(al'''a bl b ; t), and L and U are truncationq n m

errors of the two Pade rational functions. The approximants may be

computed by recurrence relations. Both C and D satisfy the

following recurrence,

(2n+z) Cn+ 1 = [(2n+z)(2n+z+2) - 0z ](2n+z+l) Cn + n(n+z)(2n+z+2) a 2 Cn- 1 , (20)

z z CY ) )]CO= = ae , 1 =a e La+(z+)(z+2);

D O = 1, D1 = (z+1)(z+2-a)

Similarly both G and H satisfy the following,

Gm+ 1 = (+2m+2-z) G - m(m+l-z) G m -1 (21)

z -cV z -aC
G = a e z, G a e z(a+1);

H 0  a, H 1 a= (2+a-z).

10 JPL Technical Memorandum 33-686



Luke has further provided very realistic estimates on the truncation error

terms L and U . For our purpose it suffices to record here selected
n m

numerical values for the sake of comparison.

TABLE 1

Numerical Estimates of Relative Truncation Errors in Luke's Pade Approximants

ILn(z, )/(z+1) 1,  z = x+iy, a = 8

n x/y 0 2 4 6 8 10

11 0. 5 .23(-07) .21(-07) .19(-07) .32(-07) .54(-07) .25(-07)

16 0.5 .61(-16) .56(-16) .55(-16) .66(-16) .14(-15) .18(-15)

10 2.5 .13(-07) .12(-07) .12(-07) .18(-07) .28(-07) .13(-07)

15 2.5 .41(-16) .40(-16) .39(-16) .45(-16) .89(-16) .11(-15)

9 4.5 .88(-08) .86(-08) .84(-08) .12(-07) .17(-07) .83(-08)

14 4.5 .31(-16) .31(-16) .30(-16) .35(-16) .64(-16) .79(-16)

IUm(z,a)/Fr(z+l), z = x+iy, a = 8

n x/y 0 2 4 6 8 10

11 0.5 .98(-17) .20(-14) .52(-12) .84(-10) .89(-08) .65(-06)

16 0.5 .63(-20) .14(-17) .41(-15) .82(-13) .12(-10) .11(-08)

20 0.5 .37(-22) .82(-20) .26(-17) .59(-15) .96(-13) .11(-10)

11 2.5 .57(-16) .11(-13) .26(-11) .35(-09) .29(-07) .16(-05)

17 2.5 .69(-20) .15(-17) .42(-15) .81(-13) .10(-10) .93(-09)

20 2.5 .14(-21) .30(-19) .93(-17) .20(-14) .29(-12) .30(-10)

11 4.5 .59(-15) .11(-12) .22(-10) .23(-08) .14(-06) .59(-05)

17 4.5 .44(-19) .93(-17) .25(-14) .42(-12) .47(-10) .35(-08)

20 4.5 .75(-21) .16(-18) .47(-16) .92(-14) .12(-11) .11(-09)

JPL Technical Memorandum 33-686 11



III. Discussions and Comparison of Methods

In the consideration of various competing methods as candidates for

algorithmic implementation, we believe the following points must be

examined.

i. Truncation Errors in the Approximations

(a) The choice of relative versus absolute error criterion must be

determined. Kuki and Spira both use an absolute criterion. This

is quite consistent in the particular application in both cases, where

the log-gamma function is being approximated in a region where the

modulus of the function values typically range in [10, 50]. ,In such

region the absolute error serves as an upper bound to the relative

error. Since the approximation can be made quite efficient by the

proper choice of region (e.g., a 7 th degree polynomial for a 10- 16

accuracy), the absolute criterion is satisfied at a low cost. On

the other hand, if the gamma function is to be approximated, then

relative criterion must be imposed, because the function values

may be arbitrarily large. We find Luke's usage of this latter

criterion also consistent with his application. Lucas' usage of

relative criterion is somewhat obscured by his error control on

the components of the function values, which we discuss next.

(b) For complex-valued functions, the choice between component

and modulus accuracy is dependent on the particular application

in question. Therefore for a general-purpose algorithm only

some rather general arguments may be advanced to favor one over

the other. In the present context, Kuki has proposed strong argument

in favor of modulus accuracy: "Since an analytic function maps the

complex plane locally formally, it maps a circular blur about the

12 JPL Technical Memorandum 33-686



correct answer. This means that the concept of vector (or

modulus) error is the natural one to use for compounding errors

through successive computational steps." Probably for the same

reason Luke and Spira have also chosen the modulus accuracy

criterion. There is an additional reason to favor the choice of

modulus accuracy in the applications of Kuki and Spira. In these

cases where absolute accuracy are desired, the modulus of the

error is an upper bound to the components.

(c) There is also the question of fixed versus variable precision

control. In the former case a fixed order approximation is

predetermined based on an error bound for the worst case. An

example is Kuki's algorithm where he retains seven terms through-

out the region of application of Stirling's approximation. The

advantages include the elimination of extra storage and of testing,

whereas the disadvantage lies in the obvious expense of an

attempt to satisfy the most pessimistic error bound. Variable

precision control is imposed through the computation of a

sequence of approximants until the difference between two con-

secutive ones is less than some desired tolerance. This type of

control, as found in the investigations of Luke and Lucas, seems

to utilize an error bound or estimate optimally, but an expense

is paid in terms of the testing needed. We believe that in general,

if the order of approximation for a desired accuracy is a rapidly

varying function of the argument, this type of control should be

used, because the most pessimistic bound may incur high cost

in the use of the approximation. Such consideration applies to

Luke's method in which the use of variable precision control is,

JPL Technical Memorandum 33-686 13



in our opinion, well justified. On the other hand, Lucas' usage

of such control is not as mandatory. In discussing the merit of

his method relative to Luke's, Kuki concluded that "this comparison

presents an example of the high cost of variable precision

programming". Whereas we agree with Kuki that Luke's method

is expensive, we disagree with his contention that the high cost

is due to variable precision control. In a subsequent paragraph

we shall discuss the counts of arithmetic operations and shall

suggest that the cost of Luke's method comes from the arithmetic

requirements intrinsic in his approach.

2. Round-Off and Cancellation Errors

In addition to truncation, there are two other sources of errors

in the use of Stirling's approximation. There is the accumulation

of round-off errors in the summation of the asymptotic series.

This summation may be readily arranged as a polynomial of

fairly low degree. For example, in Kuki's case it is a third and

seventh degree polynomials for single and double precision,

respectively; in Lucas' case, since this approximation is applied

in a region further removed from the origin, the required degree

is certainly lower than 7. This low-degree polynomial of real

coefficients is well-conditioned except near a zero where

significance is lost in the evaluation of the polynomial. But since

the application of this approximation is limited to large values of

IzI (say, Iz in 10, 30]), the other terms in the expression (13)

are also large in magnitudes. Hence full significance is not

needed for the polynomial which is added to the other terms as a

14 JPL Technical Memorandum 33-686



correction. All in all, there is no serious build-up of round-off

errors in the evaluation of equation (13) and our observation here,

viewed from an entirely different perspective, is in agreement

with Kuki's conclusion. A second source of error, through can-

cellation, is much more serious. This comes about in the use of

the logarithmic version of equation (1), in order to be consistent

with equation (13) and to avoid premature overflow. In evaluating

this expression, enF(z) is computed by subtracting a sum from

ZnF(z+n), which is substantially larger than 2nf(z), thereby contri-

buting the cancellation error. To deal with this problem, Kuki

employs an excellent maneuver by combining equations (1) and

(13) and analytically eliminate such cancellation. On the other

hand, Lucas has not attended to this problem which is certainly

an important cause of poor relative accuracy reported by him

and confirmed by the present author.

In Luke's method, the main computational scheme involves four

recurrences (20) and (21). Therefore the major concern about

round-off errors centers on the numerical stability of applying

these recurrences in a forward direction. Luke provides some

arguments to contend that such procedure is stable. In particular

his contention is based on the fact that both En(z, Z)/Cn(z, a) and

En(z, C)/D n (z, a) go to zero rapidly as n - m where En(z, a)

= Dn(z, a ) / L n ( z , a), and similarly for Gm and Hm. We believe

more detailed analysis will be needed on this point if Luke's

method is to be applied. Wimp's recent theoretical work

[ 9 1 will be helpful in this regard.

JPL Technical Memorandum 33-686 15



3. Multiple Values of Log-Gamma

In the course of computing log-gamma, any use of the complex

logarithm must be carried out with care to avoid the extraneous

addition or subtraction of a multiple of 2rr to the imaginary part

of the result. In Lucas' algorithm, log-gamma is only computed

as intermediate result to obtain gamma. Therefore any extraneous

quantity 2kTTi will not affect the final answer because exp(2kni) = 1.

In Luke's method, the process is exactly reversed. Here one is

concerned with the proper way of taking the logarithm of a complex

result. Analysis by Luke leads to the following result.

Let

F(z+l) = K + iL = r ei(q+2nk) (22)

where cp = tan- (L/K), 0 5 ( < 2n,

k = 0, 1, 2, . . ,

then k may be determined by the following.

1
Ik-Al < 7207, 2rrA = sin (.nO-1)+(B cos= - 1/2)-sin()/(120)-cp (23)

where z+l = Be

In Kuki's approach, precaution is first taken to insure that the

function computed is continuous in the first quadrant of the

complex plane. Then the term log s'in(rrz) as used in the reflection

formula, is analyzed for analytic continuity and reduction of

16 JPL Technical Memorandum 33-686



round-off errors. In the end the reflection formula is implemented

in the following form

anF(z) = G(z) - InH(z) - An(l-z) (24)

where

G(z) = tn(2n)+rry+ir(1/2-x),

H(z) = (1-e2ny) +e2nY[2 sin2(x) +i sin(2Tnx)]

Now tnH(z) can be replaced by its principal value for the following

reason. Since le- 2rZi = e2ny < 1 if y 5 0, and H(z) = 0 only if

y = 0 and x is an integer, it means that as a parameter C varies

continuously in the lower half of the complex plane, H(C) follows

a path entirely contained in the circle of radius 1 with the center at

1 + oi. Therefore the principal value of logH(C) varies continuously

along the path.

All in all, we believe that this problem has been treated by all the

authors carefully and accurately and where it is ignored,

it is done so with justification. However, equation (23) is rather

expensive to implement and in our opinion it is desirable to

simplify this proposed procedure if possible.

JPL Technical Memorandum 33-686 17



4. Counts of Arithmetic Operations and External Function Calls

The number of arithmetic operations for a particular method can be

estimated a priori. Such estimate provides an indication about the

relative expense of a method, though the corresponding algorithm

may still vary substantially depending on how it is implemented.

For our purpose here we shall express all operations in terms of two

basic units, viz., A for real floating point addition and M for real

floating multiplication. For example, each complex addition will

be assigned 2A, complex multiplication be given 4M+2A

division be approximated by 10M+2A, and real division be approx-

imated by 3M. In order to establish some common ground for

comparison, we shall consider two target precisions, say, short

and long: 10 and 10 , respectively. We shall consider the

estimates of operations needed for each method to attain a truncation

error less than these tolerances. Our attention is first drawn to

the right half of the complex plane. Except for Kuki's all methods

are symmetric with respect to the real axis, as far as number of

arithmetic operations are concerned. In Kuki's case, since the

conjugation relation is used for arguments in the fourth quadrant,

it is required only an extra addition, which is of course negligible

in our kind of estimate. Therefore we can further restrict our

operation counts to arguments in the first quadrant. Table 3 gives

the results of such operation counts based on the truncation error

bounds or estimates provided by each author. We emphasize that

these counts represent gross estimates only and that numerous

machine-dependent factors can affect the performance of a

particular method. For example, two such factors are whether

18 JPL Technical Memorandum 33-686



complex arithmetic operations are coded on line in a compiler or

floating division should be approximated as 3M. Nevertheless,

even with such uncertainties, our estimates do provide an indication

of the relative expense of each method. In addition to arithmetic

operations, attention should be focused on the number and types

of external functions used. Table 2 provides (in abbreviated

notations) a summary of functions required: complex logarithm

(CLOG), complex exponential (CEXP), real logarithm (LOG), real

exponential (EXP), real inverse tangent (ATAN), and real

hyperbolic sine (SINH).

TABLE 2

Elementary Function Calls Required on the Application of Various Methods For
Re z > 0

GAMMA LOG-GAMMA

Chebyshev Rational CEXP + ATAN + 2LOG + SINH ATAN + 2LOG + SINH
1 1

S2- L IL

Stirling Asymptotic CEXP + CLOG - 2L CLOG _ L

Pade Approximation CEXP L CEXP + CLOG ; 2L

In order to reduce our comparison to a common basis for discussion,

we shall consider a unit L which is defined to be the amount of com-

putation required for the complex logarithm. In a typical complex

logarithm about two-thirds of the work is due to the computation

of an inverse tangent and a real logarithm. Therefore the latter

combination is given (2/3)L in Table 2. Moreover, the computational

JPL Technical Memorandum 33-686 19



effort for the complex exponential may be approximated by L. Thus

in Table 2 we also summarize the units of L required in each type

of methods considered. However, the units of L given result from

an optimal counting for each method, which in actual implementation

may substantially exceed the count given. For example, where the

logarithmic version of eq. (1) is used, at least one additional call to

the complex logarithm is required, and where eq. (1) is not used

optimally, many such calls are invoked (as in Lucas' case). In

Table 3 we record for each author, together with the total number

of arithmetic operations, all the additional units of L, either due to

the need of a functional equation or due to a non-optimal arrange-

ment. Some comments apply to the individual columns appearing

in Table 3. For small arguments in Cody's method, no function

calls are required and therefore the proper fraction of L is

subtracted. Operation counts for Stirling's approximation are

obtained in a straightforward manner. A cursory examination of

eq. (13) shows the minimal requirement of (N+1) complex multi-

plications, (N+2) complex and 2 real additions. The counting for

Spira's method is based on a variable-precision error control

which favors the method somewhat because logical operations are

not included in the total. For similar reason our counts are

slightly biased against Kuki's implementation because some

arithmetic operations are incorporated for the sake of reducing

round-off errors which are not attended to in the other imple-

mentations. In the case of Luke's approximation we have computed

the truncation error estimates for the three rays argz = E, n/4 and

rr/2, where E is a small number of the order 10 - 2 . We use E
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because the approximation becomes exact for certain argument

values on the real axis. Operation counts for Luke's approximation

have been carried out by Kuki for a typical set of arguments. Our

counts differ from Kuki's in yielding more optimistic results. The

major difference comes from the method of estimating complex

arithmetic operations. For example, the multiplication of a

complex number by a real one is considered equivalent to two real

multiplications rather than one full complex multiplication. In

some operating systems, the latter may actually be applied. Thus

our operation counts for Luke's case result in Op(C) = 14A + 2CA

+ 7M + 6CM + ICD and Op(G) = 5A + ICA + 2M + 2CM for the

two recurrences (20) and (21), where CA stands for complex

addition, etc. Expressing all operations in units of A and M and

applying to the approximation (19) for C, D, G and H, we find

that Luke's method requires 2n(34M+ 30A) + 2m(10M+ 1A), where

n and m are dependent on the target precisions. It is apparent

from Luke's analysis that his method is prohibitively expensive

for large I z . In fact he suggested the usage of Stirling's approx-

imation in such cases. The error estimates he provided are

restricted to I z < 11. We have computed these estimates beyond

I z = 15 and have found that it becomes impractical to apply his

method in those cases. In Table 3 this fact is noted and in

general no meaningful operation counts can be provided for Izl 15.

A survey of Table 3 provides some meaningful comparison among

the various methods or implementations. For purely imaginary

arguments, application of Cody's approximations render the most

efficiency. This is not surprising because these are essentially
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best approximations for a particular function of one real variable.

On the other hand, for large arguments there is room for a

significant improvement in these approximations, as noted before.

For an overall coverage of arguments in the entire complex plane,

Kuki's and Spira's analyses definitely render the best approach in

efficiency. Whereas Kuki's arrangement is superior in numerical

stability, Spira's error control excells in simplicity and flexibility.

Table 3 also shows inferior results for Lucas and Luke, due to

different reasons. Luke's method is intrinsically expensive. It

involves (2n+ 2m) recurrences which contribute a large number of

arithmetic operations. Even the saving of one function call for

some arguments is far outweighed by the large number of arithmetic

operations. Inefficiency in Lucas' application comes from three

main sources. First, he applies eq. (1) in a non-optimal way,

requiring n calls to the complex logarithms. Second, his truncation

error bound is too restrictive, posing severe confinement in the

application of Stirling's approximation. Third, his numerical data

are not arranged carefully to avoid unnecessary overhead in

arithmetic operations. For example, the eleven divisions involved

in computing the coefficients C(J) are entirely superfluous.

So far we have only considered arithmetic operations for argument

values on the right half complex plane. For those on the left half

all authors recommend. the use of the reflection formula (2), which

involves a complex sine and, for log-gamma, a complex logarithm.

Therefore it would be useful to alleviate this use for at least some

arguments. Spira's analysis is a contribution in this respect.

From eq. (16) and Fig. 1 (iii) we see how the use of (2) can be

minimized.

22 JPL Technical Memorandum 33-686



TABLE 3

Counts of arithmetic operations and function calls in addition to those recorded in Table 2.

Target precisions are 10
-7 for short and 10 

16
for long.

Cody Kuki Lucas Luke Spira

I arg a Short Long Short Long Short Long Short Long Short Long

1 0 32M+32A+L 68M+64A+L 45M+22A+9L 61M+25A+9L 768M+682A 1356M+1240A 40M+39A+L 80M+75A+L

(or 
L u ke 

in 16M+16A 52M+48A+L 45M+18A+5L 61M+25A+5L 652M+584A 1260M+1164A 20M+20A 60M+56A+L

10 case) 16M+16A 32M+28A 45M+13A 61M+25A 568M+536A 1156M+1094A 16M+16A 36M+31A

15 16M+16A 32M+28A 45M+13A 57M+22A 396M+406A 1100M+1062A 16M+16A 32M+28A

20 16M+16A 32M+28A 45M+13A 61M+25A 516M+538A * 16M+16A 28M+25A

25 25 16M+16A 32M+28A 45M+13A 61M+25A 644M+572A * 16M+16A 28M+25A

S 30 ,. 16M+16A 32M+28A 45M+13A 57M+22A 684M+612A * 16M+16A 28M+25A

1 n/4 32M+32A+L 68M+64A+L 45M+27A+10L 61M+29A+9L 788M+704A 1416M+1306A 40M+39A+L 80M+75A+L

5 16M+16A 52M+48A+L 45M+23A+6L 61M+29A+5L 704M+656A 1392M+1324A 20M+20A 60M+56A+L

10 16M+16A 32M+28A 45M+18A+L 61M+29A 788M+778A 1416M+1380A 16M+16A 36M+31A

15 16M+16A 32M+28A 45M+18A+L 57M+26A * * 16M+16A 32M+28A

20 16M+16A 32M+28A 45M+18A+L 61M+29A * + 16M+16A 28M+25A

25 16M+16A 32M+28A 45M+18A+L 61M+29A * * 16M+16A 28M+25A

30 16M+16A 32M+28A 45M+18A+L 57M+26A * * 16M+16A 28M+25A

1 Tt/2 13M+8A - L 24M+19A- L 36M+36A+L 72M+68A+L 45M+23A+10L 61M+29A+10L 808M+726A 1416M+1306A 40M+39A+L 80M+75A+L

5 12M+5A + L 18M+II11A+L 28M+28A+L 72M+68A+L 45M+23A+10L 61M+29A+5L 868M+792A 1576M+1482A 20M+20A 60M+56A+L

10 12M+SA+ L 18M+IlA+ L 20M+20A 52M+48A+L 45M+23A+10L 61M+29A+10L 1008M+946A 1756M+1680A 16M+16A 36M+31A

15 12M+5A+ L 18M+IIA+ L ZOM+20A 36M+32A 45M+28A+15L 57M+26A+15L 1168M+1122A * 16M+16A 32M+28A

20 12M+5A+ L 18M+11A+ L 20M+20A 36M+32A 45M+33A+20L 61M+29A+20L * * 16M+16A 28M+25A

25 12M+5A + L 18M+11A+ L 20M+20A 36M+32A 45M+38A+25L 61M+29A+25L * 16M+ 1.6A 28M+25A

1 I * 16M+1.6A ZM+25A
30 12M+5A+ L 18M+IIA+ L 20M+20A 36M+32A 45M+43A+30L 57M+26A+30L * * 16M+16A 28M+25A

Convergence is too slow for any practical application.
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IV. Comparison and Testing of Algorithms

Of the five authors mentioned above, only two have actually published

algorithms accompanying their analyses. They appear in this journal as

Algorithms 404 and 421, both coded in ANSI FORTRAN. In this section we

mainly attend to the comparison of these two algorithms. As indicated in the

last section, there is much theoretical evidence to believe in the superiority

of A421 over A404. This conclusion will be further substantiated here by

empirical data. Before such quantitative results are presented, it may be

useful to render a few qualitative remarks about each algorithm.

1. Comments on Algorithm 404

(i) The overall algorithm is easy to follow, with sufficient comments

at strategic places to indicate the different blocks of actions to be

executed. However, throughout the program, we can find obvious

instances of inefficient coding. For example, near statement 70, log(2n

is actually computed via a call to the logarithm and near statement

100, A= CMPLX(FLOAT(I-1), 0.) is realized by a statement that causes

an unnecessary floating multiplication. Another instance of serious

inefficiency is the generous but unnecessary usage of the complex

logarithm. As mentioned in the last section, the complex logarithm

is used n times for recursion. In addition, near statement 120

the logarithmic version of the reflection formula is used, followed by a

complex exponential. The last process should be reversed, thereby

saving a call to the complex logarithm.

(ii) The treatment of the function near the poles is somewhat mysterious

and misleading. First it was given some remarks on an empirical

relation between the number of significant figures obtained by

Stirling's series and the distance from z to the nearest pole z 0 , say,

24 
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8 = z-z 0 . These remarks are irrelevant to the algorithm because

the use of Stirling's series is confined to the right half of the complex

plane which does not contain any pole. In fact, the poles appear through

the term sinTrz. When z is too close to a pole, i.e., 8 < TOL = limit of

precision of a computer system in question, the result 1/TOL is

returned. This result can be misleading because TOL is not given

as an exact machine constant in the algorithm and the result given

deviates substantially from the true function value which should be

approximated by 1/(TOL*z0!). In fact a better approach would have

been a test on whether z is exactly a negative integer and a return

for just that case.

(iii) Numerical data are not in general given in the most efficient form.

For example, the data vector C(I) could have been stored as

floating point constants in DATA statements, with the rational forms

given in comments for conversion to other computers. This

arrangement saves 11 divisions. All these constants can then be

put together with PI, TOL and IOUT as machine-dependent numbers.

The change of these 11 clearly identified constants requires trivial

effort.

(iv) It is more desirable to have the function subprogram in the form of

a subroutine so as to include a call to log-gamma. There are two

reasons for such desire. First, the use of log-gamma allows

application in a much larger portion of the complex plane. Second,

the algorithm first computes log-gamma and then takes the

complex exponential to obtain the result. It would be inefficient for a

user who desires log-gamma to compute the logarithm of a result

which is the exponential of the desired answer.
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(v) A cursory examination of the documentation of this algorithm reveals

that the authors' testing is far from adequate. The test of the

reflection formula, which is also used in the algorithm, provides

very little information about its reliability. In fact, for all values

of z outside the strip 0 < Real(z) < 1, this test shows no more than

the proper incorporation of the formula in the subprogram. The

testing of the algorithm against n! is likewise deficient. One

wonders why it was not even tested again r(x) which is provided on

the IBM 360 Fortran library. The comparison of the algorithm

against tabulated values may be more thorough, but the authors do

not provide information on how extensive this was done. Did they

compare 10 or 100 or 1000 cases? Such inadequate information

about the testing of this algorithm raises serious quesions about

its reliability.

(vi) It would be useful to include in comments a list of external references.

2. Comments on Algorithm 421

(i) The overall algorithm is meticulously coded to yield utmost

efficiency and accuracy. For example a quantity squared is

accomplished by a multiplication rather than a call to the exponen-

tiation; such sequence as ((z+k)/(z+n)) is not computed through

straightforward addition so that round-off error accumulation is

minimized. In short, it is a striking example of superb coding.

(ii) There are sufficient comments for a reader to follow through the

code. However, there is a lack of identification of the constants

stored in data. For example, it is not at all obvious that HL2P is

£n Zn. It would be helpful if a group of logical flags (LFO, LF1,

etc.) be more explicitly identified.
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(iii) Like A404 there is no list of external references.

(iv) The answer returned by the algorithm when the argument is too

close to a singularity should be 0, instead of Q+iM. (D is the largest

floating point number representable in the machine.)

3. Accuracy Tests on Algorithm 421

This algorithm is compiled and executed on a UNIVAC 1108 computer,

with minor changes of the machine-dependent constants EPS, OMEGA and

DEO. Three stages of testing are carried out, in increasing degree of

intensity.

(i) Blunder check - 40 sets of complex results are computed from the

algorithm and compared with a published numerical table on Pp. 277-

287 [ 7 ]. These results all agree to the last significant figure given

by the table.

(ii) Identity check - The region -30 : Re z < 30 and -30 5 Imz ! 30 are

divided into 2000 strips parallel to the imaginary axis. For a

uniformly random argument z in each strip nrF(z), tnF(z+1) and enf(2z)

are computed and tested against the duplication formula (4). This

procedure is repeated for 2000 strips parallel to the real axis. The

maximum absolute discrepancy from this identity is 1. 3D-15 for log-

gamma, which is consistent with the magnitudes of error reported

by the author of this algorithm.

(iii) Automatic tabular comparison - For the sake of more thorough

testing, we have constructed a reference subprogram QPCGAM

which computes the complex gamma function in extended precision

using a package of subroutines in 70-bit (about 21 decimal) arithmetic,

composed by C. L. Lawson and associates at the Jet Propulsion
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Laboratory. This reference subprogram is based on a Stirling's

approximation with 9 terms, having a truncation error less than

-19
2 x 10 . QPCGAM is itself subjected to the kind of testing des-

cribed in (ii) above and yields a maximum absolute discrepancy less

-18
than 10 for log-gamma. Algorithm 421 is then compared against

QPCGAM for 7 rectangular regions of the complex plane. For

comparison each region is divided into 500 strips parallel to the

imaginary axis and for each strip a random argument is chosen,

making a total of 500 test arguments for each region. For log-

gamma this process is repeated for strips parallel to the real axis.

The results of the comparison are summarized in Tables 4 and 5

where "error" means the difference between A421 and QPCGAM.

Performance statistics recorded here render empirical confirmation

to our qualitative remarks made in the last section. For example,

we see that the absolute error for log-gamma indeed serves as an

upper bound to the relative error. We also observe that all the

precautionary measures taken by Kuki to alleviate cancellation

error and serious accumulation of round-off error are functioning

properly. The performance statistics found here are consistent

with those reported by him, except for the fact the errors found

by us are uniformly smaller than those by him. The last fact

can be readily understood in terms of the smaller truncation error

for long precision arithmetic on the UNIVAC 1108 computer than

that on the IBM 360 O/S. All in all, our intensive and extensive

testing has provided us much confidence in the reliability of this

algorithm.
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TABLE 4

Relative Errors for Gamma Function by A421

Interval of Re z Interval of Im z Max. Relative Error RMS Relative Error

[0, 15] [0, 15] 8. 3D-17 1.2D-17

[0, 15] [15, 30] 2. 2D-16 3. 2D-17

[15, 30] [0, 15] 1. OD-16 1.7D-17

[15, 30] [15, 30] 1.7D-16 3. 2D-17

[-30,0] [0, 30] 1. 8D-16 2.7D-17

[-30, 0] [-30, 0] 2. 8D-16 4.7D-17

[0, 30] [-30, 0] 2. 5D-16 4. 5D-17
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TABLE 5

Absolute and Relative Errors for Log-Gamma Function by A421

(a) Random Arguments in Strips Parallel to Imaginary Axis

Interval of Interval of Maximum RMS Maximum RMS
Re z Imz Relative Error Relative Error Absolute Error Absolute Error

[0, 15] [0, 15] 2.4D-17 2. 1D-18 1. 1D-16 2.4D-17

[0, 15] [15, 30] 4.2D-18 8. 7D-19 2.7D-16 6. OD-17

[15, 30] [0, 15] 3.4D-18 7. 1D-19 2. 5D-16 3. 9D-17

[15, 30] r15, 30] 3. 8D-18 8. 0D-19 3. 1D-16 6. 5D-17

[-30, 0] [0, 30] 4. 2D-18 7.9D-19 5. 8D-16 7. 2D-17

[-30,0] [-30,0] 4. 0D-18 8.3D-19 4. 0D-16 7.8D-17

[0, 30] [-30,0] 9.2D-18 1. 1D-18 3. 0D-16 5. 6D-17

(b) Random Arguments in Strips Parallel to Real Axis

0, 15] [0, 15] 7. 8D-17 5. lD-18 1.4D--l6 2.4D-17

[0, 15] [15,30] 3.5D-18 7.5D-19 1. 9D-16 4.0D-17

[15, 30] [0, 15] 4. 5D-18 9. 3D-19 3. 1D-16 6. 2D-17

[15, 30] [15, 30] 4. 5D-18 8. ID-19 3. 3D-16 6. 8D-17

[-30, 0] [0, 30] 6.4D-18 9. 2D-19 3. 0D-16 5.7D-17

[-30,0] [-30, 01 4. 3D-18 7.8D-19 5. 3D-16 7. 8D-17

[0, 30] [-30, 0] 8.6D-18 9.0D-19 4. 2D-16 7.5D-17
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4. Accuracy Tests on Algorithm 404

A404 is compiled and executed on a UNIVAC 1108 computer, with

minor changes of the machine-dependent constants IOUT, PI and TOL.

Since this algorithm is written for short precision, it may be compared

against A421 the validity and reliability of which have been established.

Automatic tabular comparison as described above yields the performance

statistics in Table 6. For Re z 2 0, our results are consistent with those

reported by Lucas.

5. Timing Tests on Algorithms 404 and 421

In a time-sharing operating system precise timing of a computer

program is not too meaningful, because such timing is dependent on the

transitory operating environment. For this reason we have conducted a set

of relative timing tests at different times in a two - day period. The

average so obtained should serve as a good indication of the efficiency of

the program tested. As an additional aid to the interpretation of the

timing tests, the double precision exponential function DEXP is tested

along with each algorithm so that the efficiency can also be expressed in

terms of units of DEXP. Thus for each set of tests all three programs are

executed in the same computer run, for 1000 test arguments selected in

the same way as described in the accuracy tests, with proper alternation

between vertical and horizontal strips. The statistics are reported in

Table 7. These results confirm our earlier remarks on the superiority

in efficiency of A421 over A404. In fact, it is significant that A421

yields almost 3 times the precision as A404 and is still better than A404 in

efficiency.
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TABLE 6

Relative Errors for Gamma Function by A404

(a) Random Arguments in Strips Parallel to Imaginary Axis

Interval of Re z Interval of Im z Max. Relative Error RMS Relative Error

[0, 15] [0, 15] 1.4E-6 2. 3E-7

[0, 15] [15, 30] 3. 8E-6 6.9E-7

[15, 30] [ 0, 15] 2. 1E-6 4. 4E-7

[15, 30] [15, 30] 3. 2E-6 5.4E-7

[-15, 0] [0, 15] 7. 8E-6 1. 1E-6

[-15, 0] [-15, 0] 6.9E-6 I. 1E-6

[0, 15] [-15, 0] 2. 1E-6 3.7E-7

(b) Random Arguments in Strips Parallel to Real Axis

[0, 15] [0, 15] 1. 3E-6 2.4E-7

[0, 15] [15, 30] 4. 4E-6 7.4E-7

[15, 30] [0, 15] 2. 5E-6 4.6E-7

[15, 30] [15, 30] 2.9E-6 5. 1E-7

[-15, 0 [0, 15] 5. 6E-6 1. 1E-6

[-15, 0] [-15,0] i. 1E-5 1.2E-6

[0, 15] [-15, 0] 1. OE-6 2. 1E-7
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TABLE 7

Average Timing for A421 and A404

With DEXP as a Reference Program

Tests A404 A421 DEXP

1 2.85 msec 1.85 msec 0. 19 msec

2 2.38 1.79 0.18

3 2.34 1.15 0.18

4 3.01 2.37 0.19

5 2.99 1.87 0.19

Average 2.71 1.93 0.19
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V. Conclusion

We have investigated five suggested approaches for the computation

of the complex gamma function. Our comparison, which is most concerned

with accuracy and efficiency, leads us to conclude that Cody's approximation

is best for this function of imaginary arguments and a combination of Kuki's

and Spira's analyses renders the best method for this function of general

complex arguments. Furthermore, this comparison also demonstrates

that Kuji's meticulous rearrangement of mathematical formulae and

precautionary steps in detail implementation lead to his high-quality

algorithm. Therefore we recommend without reservation that thid

algorithm be used where appropriate, either in individual application or

in program libraries.
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